共1个回答0条评论
分享
图数据库的优点有什么?同mysql和kv数据库相比有什么本质不同?
最近在做知识图谱项目,试用了一下neo4j 感觉同其他数据库相比没有本质区别。而且不支持多实例,不能分表,效率也相对差一些。是否可以用成熟的key-value...
显示全部
马小新
排序方式:被封时间
时间排序由新到旧
- 24 个点赞 👍
先给一个直观的印象,下面是从图数据库中查询出的电影关系图谱:
与徐克相关的电影关系图谱 图数据库优点有什么?
- 使用图(或者网)的方式来表达现实世界的关系很直接、自然,易于建模。比如某人喜欢看某电影,就可以建立一条边连接这个人和这部电影,这条边就叫做“喜欢”边,同时这个人还可以有其它边,比如“朋友”边、“同学”边等,同样这个电影也可以有其它边,比如“导演”边、“主演”边等,这样就构建了自然的关系网。
- 图数据库可以很高效的插入大量数据。图数据库面向的应用领域数据量可能都比较大,比如知识图谱、社交关系、风控关系等,总数据量级别一般在亿或十亿以上,有的甚至达到百亿边。mysql不做分表分库的情况下插入百万数据基本就慢到不行,图数据库基本能胜任亿级以上的数据,比如neo4j、titan(janus)、hugegraph等图数据库,持续插入十亿级的数据基本还能保持在一个较高的速度。
- 图数据库可以很高效的查询关联数据。传统关系型数据库不擅长做关联查询,特别是多层关联(比如查我的好友的好友有哪些人),因为一般来说都需要做表连接,表连接是一个很昂贵的操作,涉及到大量的IO操作及内存消耗。图数据库对关联查询一般都进行针对性的优化,比如存储模型上、数据结构、查询算法等,防止局部数据的查询引发全部数据的读取。
- 图数据库提供了针对图检索的查询语言,比如Gremlin、Cypher等图数据库语言。图查询语言大大方便了关联分析业务的持续开发,传统方案在需求变更时往往要修改数据存储模型、修改复杂的查询脚本,图数据库已经把业务表达抽象好了,比如上面的2层好友查询,Gremlin实现为g.V(me).out('friend').out('friend'),如果需要改为2层同学查询,那调整一下把好友换为同学即可g.V(me).out('classmate').out('classmate')。
- 图数据库提供了专业的分析算法、工具。比如ShortestPath、PageRank、PersonalRank、Louvain等等,不少图数据库还提供了数据批量导入工具,提供了可视化的图显示界面,使得数据的分析结果更加直观展示出来。
是否可以用成熟的key-value数据库封装一下来满足大部分需求呢?
当然可以的,那本质上就是在做一个图数据库,但是代价还是很大的。其实上面提到的titan、hugegraph就是基于KV数据库作为后端存储的。
查看全文>>
javeme